COMMAND-AND-CONTROL
SUBSYSTEM FOR REGOLITH
MINING ROBOT

Design

Fall 2015

Pablo Canseco
pcanseco2011@my.fit.edu
Design Document



Purpose

Project ARES is the name of the robot for FIT’s entry into the NASA Robotics Mining
Competition taking place May 2016. ARES is a robot designed to mine as much lunar
soil simulant as possible in a ten-minute run. The C2C subsystem will be responsible for
ensuring ARES is operational, responsive, and is able to achieve the goals of the
competition, yielding FIT as many points as possible.

Scope

The C2C Subsystem will be composed of the software running on the onboard
computer of ARES, the Control Station software running on a personal computer, and
the firmware of all other electromechanical components of the robot. The C2C
subsystem will ensure that sensor data is available to the Control Station as well as
ensure that the Control Station can communicate and control the robot during its
operation. The C2C subsytem will collect data from ARES, send it over the
communications link to the Control Station, and accept commands from the Control
Station to control ARES.

Definitions, acronyms, and abbreviations

e ARES - The robot FIT will use for NASA’s 2016 Robotics Mining Competition
e C2C - Command-and-Control, the subsystem this document describes
e CS - Control Station, where a human operator will interact with the robot
e Regolith — Lunar soil simulant to be mined by ARES
e RMC - NASA'’s Robotics Mining Competition

Participants

Pablo Canseco Software / Communications Lead

Leyane Mohammed Project Manager

Domenick Albanese Software

Ronald-Dean Allado Software

Kyle Rieder Software / Consultant

Mark Thames Communications / Electrical

Khalphani Green Electrical Lead



Adrian McHargh Electrical

Spencer Lower Electrical
Nathaniel Voris Structures Lead
Zoher Kothari Structures

John Breen Structures
Jacob Netzley Structures
Abigail Stevens Structures
Ashle Thompson Structures

General Overview

We plan to develop a complete solution for remotely controlling a robot using standard
software practices recommended by other software developers using similar platforms.
We intend to break up the system into two parts, a control station and the ARES
onboard software. Linking them will be a TCP/IP connection directly between the two
systems. The robot will act as a server and the control station will act as a client. During
manual operation, there will be two connections to the server, one exclusively for robot
data from ARES to the control station, and one for motor and hardware control.
Autonomous operation will drop the connection for motor and hardware control such
that ARES robot / operational data is the only thing going through the connection.

On the robot, software running on a Raspberry Pi will control an attached Arduino. The
Arduino will control the various motors and collect data from the various sensors. The
Arduino will send the data back to the Raspberry Pi for processing and ultimately to the
control station. The aim is to make the system responsive by using input smoothing and
a low-level TCP (or UDP if TCP yields too much latency) connection. The robot, under
manual control will move away from it’s starting location in the arena, move towards a
mining zone, mine as much regolith as the mining mechanism can hold, move back
towards the regolith collection bin, and dump it all in.



WorkFlow

The phases the robot will undergo in the competition will be:

Testing
Initialization
Transport
Mining
Transport
Release

2 N

Subsystem Flow Chart

Start

Testing }47

All systems
functional?

Troubleshooting

Initialization }—I

Transport

|

Mining

Return

¥

Return

|

Deposit

Yes

Time left?



Class Diagram

b:)

Utils

startServeriint port) ; void
! startTimer{int minutes) : void
kill(} : woid

¥
Motion

Control Station

moveFwd() : void

send(String) - int moveBwd() : void

receive() : String turnRight() : void

readinput(} : Char turnLeft() : void

robotBeep() : void raiseMiner() : void

kill(}: void lowerMiner() : void
4 mine() : void

release() : void

Data

send({String) : void

readBattery(} : double
readPowerConsumption() : double
readDistToBin(} : double
readSignalstrengthi) : double
readOrientation() :int

This is a very high-level overview of the methods and classes that will be implemented
in the subsystem. In general, the ControlStation will involve a window with a console
that outputs what it reads from user key presses, a few fields where robot data like
battery voltage and power consumption will be displayed, and some software buttons
for the soft killswitch and to connect to the robot. On the robot side, the software will be
entirely text-based with commands being received and data being sent over TCP. A
Motion class will control all the motors involved, the Data class will handle reading data
and sending it back to the control station, and the Utils class takes care of starting the



server on the robot, will have a timing utility, and will call the killswitch function if
instructed to do so by the Control Station.



