

## NASA Robotic Mining Competition Project ARES

Faculty Sponsor

Dr. Keith Gallagher



#### Team Roster

Leyane Mohammed Project Manager

Pablo Canseco Software / Communications Lead

Domenick Albanese SoftwareRonald-Dean Allado Software

Kyle Rieder
 Software / Consultant

Mark Thames Communications / Electrical

Khalphani Green Electrical Lead

Adrian McHargh ElectricalSpencer Lower Electrical

Nathaniel Voris Structures Lead

Zoher Kothari
John Breen
Jacob Netzley
Abigail Stevens
Structures
Structures
Structures

Ashle Thompson Structures



# About the Competition

- Goal is to build a robot capable of mining as much lunar regolith simulant as possible during timed runs
- Autonomous operation grants a significant competitive edge
- \$5000 and a trophy are awarded to the first place winner



### Goals

- Provide robust command-and-control capabilities to FIT's entry into NASA's Robotic Mining Competition (NASA RMC), Project ARES.
- Project ARES will feature a regolith (lunar/martian soil simulant) mining apparatus, a transport mechanism, a communications subsystem, and a data processing / decision making subsystem.
- Autonomous control options will be explored in order to give the school a competitive edge in the NASA RMC this coming May, 2016.



#### Motivation

- Show skills learned during our education at Florida Tech
- Attempt to create a robot capable of autonomous operation
- Create a control system for a robot that makes driving it easy

# Technical Challenges

- Arduino Environment
- Raspberry Pi
- TCP/IP communications
- Autonomous robot operation
- GUI Development

### Milestone 1

- Finalize hardware selection and do research on usage and feature availability.
- Work on Arduino abstraction
- Requirement Document
- Design Document
- Test Plan



## Milestone 2

- Begin GUI development
- Work on Ground Station to Robot communications



### Milestone 3

- Finalize GUI
- Work on responsive and robust robot control
- Optimize / minimize communications data throughput
- Begin autonomous operation work / research



# Questions?